General Frame Structures on Quantum Principal Bundles
نویسنده
چکیده
A noncommutative-geometric generalization of the classical formalism of frame bundles is developed, incorporating into the theory of quantum principal bundles the concept of the Levi-Civita connection. The construction of a natural differential calculus on quantum principal frame bundles is presented, including the construction of the associated differential calculus on the structure group. General torsion operators are defined and analyzed. Illustrative examples are presented.
منابع مشابه
AV-differential geometry: Euler-Lagrange equations
A general, consistent and complete framework for geometrical formulation of mechanical systems is proposed, based on certain structures on affine bundles (affgebroids) that generalize Lie algebras and Lie algebroids. This scheme covers and unifies various geometrical approaches to mechanics in the Lagrangian and Hamiltonian pictures, including time-dependent lagrangians and hamiltonians. In our...
متن کاملNoncommutative Differential Geometry and Twisting of Quantum Groups
We outline the recent classification of differential structures for all main classes of quantum groups. We also outline the algebraic notion of ‘quantum manifold’ and ‘quantum Riemannian manifold’ based on quantum group principal bundles, a formulation that works over general unital algebras.
متن کاملPrincipal Bundles over Statistical Manifolds
In this paper, we introduce the concept of principal bundles on statistical manifolds. After necessary preliminaries on information geometry and principal bundles on manifolds, we study the α-structure of frame bundles over statistical manifolds with respect to α-connections, by giving geometric structures. The manifold of one-dimensional normal distributions appears in the end as an applicatio...
متن کاملar X iv : q - a lg / 9 50 70 22 v 1 2 0 Ju l 1 99 5 QUANTUM PRINCIPAL BUNDLES AS HOPF - GALOIS EXTENSIONS
It is shown that every quantum principal bundle with a compact structure group is a Hopf-Galois extension. This property naturally extends to the level of general differential structures, so that every differential calculus over a quantum principal bundle with a compact structure group is a graded-differential variant of the Hopf-Galois extension.
متن کاملOn Differential Structures on Quantum Principal Bundles
A constructive approach to differential calculus on quantum principal bundles is presented. The calculus on the bundle is built in an intrinsic manner, starting from given graded (differential) *-algebras representing horizontal forms on the bundle and differential forms on the base manifold, together with a family of antiderivations acting on horizontal forms, playing the role of covariant der...
متن کامل